The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	0000000

Kummer Rigidity for Hyperbolic Hyperkähler Automorphisms

Seung uk Jang

University of Chicago

2022. 05. 25.

<ロト < 部 > < 言 > < 言 > 言 の Q (*) 1/32

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	0000000

Outline

2 Cat-like Systems

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ ○ Q (~ 2/32

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
•0000000000			

Outline

1 The Cat Map

2 Cat-like Systems

3 Backgrounds

4 Sketch of the Proof

<ロト < 部ト < 言ト < 言ト 言の < で 3/32

The Cat Map	<i>Cat</i> -like Systems	Backgrounds	Sketch of the Proof
0●0000000000	00000	000000	
The Cat Map			

Let
$$\mathbb{T}=\mathbb{R}^2/\mathbb{Z}^2.$$

$$\begin{aligned} \text{Cat} &: \mathbb{T} \to \mathbb{T}, \\ (z, w) \mapsto (2z + w, z + w), \quad \text{ i.e., } \\ \begin{bmatrix} z \\ w \end{bmatrix} \mapsto \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} \end{aligned}$$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

4/32

This *Cat* will be a toy example for a while.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00●00000000	00000	000000	0000000
<i>Cat</i> is a matrix $\begin{bmatrix} 2\\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Two eigenlines: ($arphi$ =	$=\frac{1}{2}(1+\sqrt{5})).$	

Example (Stable and Unstable distributions)

 φ^{-2} -eigenline $E^{-}(x) \subset T_{x}\mathbb{T}$: shrinks by *Cat. Stable distribution* of *Cat.*

 φ^2 -eigenline $E^+(x) \subset T_x \mathbb{T}$: expands by *Cat. Unstable distribution* of *Cat.*

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
0000000000	00000	000000	0000000

Example (Stable and Unstable manifolds)

Wrap $E^{-}(x), E^{+}(x) \subset T_{x}\mathbb{T}$ on \mathbb{T} . Then we get immersed manifolds $W^{-}(x), W^{+}(x)$ (which are $\cong \mathbb{R}$).

Called stable and unstable manifold of Cat.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
0000000000	00000	000000	0000000

Lyapunov exponents encodes how Cat acts on $E^{\pm}(x)$ (and $W^{\pm}(x)$).

Example (Lyapunov Exponents)

 $\log \varphi^2 = .9624$ and $\log \varphi^{-2} = -.9624$ are Lyapunov exponents of Cat.

7/32

They are log of dialation rates along E^+ and E^- :

- Cat stretches $v \in E^+(x)$ by φ^2 .
- Cat shrinks $v \in E^{-}(x)$ by φ^{-2} .

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000●000000		000000	0000000
Entropy			

- X compact, $f: X \to X$ continuous, μ a f-invariant measure.
 - Entropy h(f) measures how complicated orbits of f are.
 - Measure entropy $h_{\mu}(f)$ measures 'information' of orbits w.r.t. μ .

Example

If $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ shifts decimal point, $f(.a_1a_2...) = .a_2a_3...$, then

(patterns of $x, f(x), \ldots, f^{N-1}(x)$) ~ (first N digits $x = .a_1a_2 \ldots a_N \cdots$).

Thus 10^N many, and $h(f) = \log 10$. If $\mu = \text{Leb}$, the patterns are uniform, so $h_{\mu}(f) = \log 10$ too.

 μ is a measure of maximal entropy (m.m.e.) if $h_{\mu}(f) = h(f)$.

イロン イロン イヨン イヨン 二日

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000●000000		000000	0000000
Entropy			

- X compact, $f: X \to X$ continuous, μ a f-invariant measure.
 - Entropy h(f) measures how complicated orbits of f are.
 - Measure entropy $h_{\mu}(f)$ measures 'information' of orbits w.r.t. μ .

Example

If $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ shifts decimal point, $f(.a_1a_2...) = .a_2a_3...$, then

(patterns of $x, f(x), \ldots, f^{N-1}(x)$) ~ (first N digits $x = .a_1a_2 \ldots a_N \cdots$).

Thus 10^N many, and $h(f) = \log 10$. If $\mu = \text{Leb}$, the patterns are uniform, so $h_{\mu}(f) = \log 10$ too.

 μ is a measure of maximal entropy (m.m.e.) if $h_{\mu}(f) = h(f)$.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	000000

For *Cat*, we use Lyapunov exponents to get h(Cat).

Example (Entropy)

```
Entropy h(Cat) of Cat is \log \varphi^2.
Orbits Cat^N(x) lie near W^+(x), so
```

```
(how long W^+(x) is after Cat^N) \sim (e^{\log \varphi^2})^N = (\varphi^2)^N
```

is the complexity.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	0000000

Recall μ is a measure of maximal entropy (m.m.e.) if $h_{\mu}(f) = h(f)$.

Example (m.m.e.)

For *Cat*, the volume on \mathbb{T} is a m.m.e..

 $h_{
m vol}(Cat)$ counts how many 'slices' does Cat^N make on $[0,1]^2$: $\sim (arphi^2)^N$, thus

$$h_{\mathsf{vol}}(\mathsf{Cat}) = \log \varphi^2 = h(\mathsf{Cat}),$$

so vol is m.m.e.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
000000000000	00000	000000	0000000

Cat map features:

Summary

- Stable/Unstable distributions E^{\pm} and manifolds W^{\pm} .
- Cat acts dilations along E^{\pm} ,
- and log of dilation rates are Lyapunov exponents.
- An m.m.e. of *Cat* is the volume measure.

Same properties, if we

- \bullet complexify $\textit{Cat}_{\mathbb{C}}\colon \mathbb{C}^2/\mathbb{Z}^4\to \mathbb{C}^2/\mathbb{Z}^4,$ and
- *n*-fold product $Cat_{\mathbb{C}}^{\times n} \colon \mathbb{C}^{2n}/(\mathbb{Z}^4)^n \to \mathbb{C}^{2n}/(\mathbb{Z}^4)^n$.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	0000000

Cat map features:

Summary

- Stable/Unstable distributions E^{\pm} and manifolds W^{\pm} .
- Cat acts dilations along E^{\pm} ,
- and log of dilation rates are Lyapunov exponents.
- An m.m.e. of *Cat* is the volume measure.

Same properties, if we

- complexify $Cat_{\mathbb{C}} \colon \mathbb{C}^2/\mathbb{Z}^4 \to \mathbb{C}^2/\mathbb{Z}^4$, and
- *n*-fold product $Cat_{\mathbb{C}}^{\times n} \colon \mathbb{C}^{2n}/(\mathbb{Z}^4)^n \to \mathbb{C}^{2n}/(\mathbb{Z}^4)^n$.

11/32

The Cat Map		Cat-like Systems	Backgrounds	Sketch of the Proof
0000000000000				
17	-	1		

Kummer Example

Let $\mathbb{T}_{\mathbb{C}} = \mathbb{C}^2/\mathbb{Z}^4$, complexified $Cat_{\mathbb{C}} \colon \mathbb{T}_{\mathbb{C}} \to \mathbb{T}_{\mathbb{C}}$. Let $\mathbb{T}_{\mathbb{C}}/\{\pm 1\} = \mathbb{T}_{\mathbb{C}}/(x \sim -x)$. Induce $Cat_{\mathbb{C}} \colon \mathbb{T}_{\mathbb{C}}/\{\pm 1\} \to \mathbb{T}_{\mathbb{C}}/\{\pm 1\}$.

• $\mathbb{T}_{\mathbb{C}}/\{\pm 1\}$ is like a complex manifold, but with singularities.

 Normalization π: X → T_C/{±1} is a surjective map from a complex manifold X, with a dense (Zariski) open U ⊂ X that

ullet image of U by π is the non-singular locus of $\mathbb{T}_{\mathbb{C}}/\{\pm 1\},$ and

• π is an isomorphism $U \cong \pi(U)$.

And, any holomorphic $g: Y \to \mathbb{T}_{\mathbb{C}}/\{\pm 1\}$ factors $Y \to X \to \mathbb{T}_{\mathbb{C}}/\{\pm 1\}.$

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
000000000000			
И Г	l		

Kummer Example

Let $\mathbb{T}_{\mathbb{C}} = \mathbb{C}^2/\mathbb{Z}^4$, complexified $Cat_{\mathbb{C}} \colon \mathbb{T}_{\mathbb{C}} \to \mathbb{T}_{\mathbb{C}}$. Let $\mathbb{T}_{\mathbb{C}}/\{\pm 1\} = \mathbb{T}_{\mathbb{C}}/(x \sim -x)$. Induce $Cat_{\mathbb{C}} \colon \mathbb{T}_{\mathbb{C}}/\{\pm 1\} \to \mathbb{T}_{\mathbb{C}}/\{\pm 1\}$.

- $\mathbb{T}_{\mathbb{C}}/\{\pm 1\}$ is like a complex manifold, but with singularities.
- Normalization π: X → T_C/{±1} is a surjective map from a complex manifold X, with a dense (Zariski) open U ⊂ X that
 - $\bullet\,$ image of U by π is the non-singular locus of $\mathbb{T}_{\mathbb{C}}/\{\pm 1\},$ and
 - π is an isomorphism $U \cong \pi(U)$.

And, any holomorphic $g: Y \to \mathbb{T}_{\mathbb{C}}/\{\pm 1\}$ factors $Y \to X \to \mathbb{T}_{\mathbb{C}}/\{\pm 1\}.$

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	000000

Normalize $X \to \mathbb{T}_{\mathbb{C}}/\{\pm 1\}$. Then $Cat_{\mathbb{C}}$ lifts to $f : X \to X$. (In short: (X, f) normalizes and lifts $(\mathbb{T}_{\mathbb{C}}/\{\pm 1\}, Cat_{\mathbb{C}})$.)

- *X*—*Kummer surface* from $\mathbb{T}_{\mathbb{C}}$.
- f—Kummer example from $Cat_{\mathbb{C}} \colon \mathbb{T}_{\mathbb{C}} \to \mathbb{T}_{\mathbb{C}}$.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
0000000000	00000	000000	0000000

Features of *Cat* are mostly kept on Kummer examples.

Proposition

The Kummer example $f : X \to X$ from $Cat_{\mathbb{C}}$ has:

- Stable/Unstable distributions E[±] and manifolds W[±], defined on a dense (Zariski) open U ⊂ X.
- f acts dilations along E^{\pm} : a metric ω_0 on U has $f^*\omega_0|E^{\pm} = \lambda_{\pm} \cdot \omega_0|E^{\pm}$,
- and $\frac{1}{2}$ of log of dilation rates are Lyapunov exponents.
- An m.m.e. of f is the volume measure on X.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	0000000
· · · · · · · · · · · · · · · · · · ·			

Outline

2 Cat-like Systems

	Cat-like Systems O●OOO	Backgrounds 000000	OCOCOCO
Object of Int	erest		

Now focus on a pair (X, f):

- (X, ω) compact Kähler manifold,
 - ullet complex manifold X with a closed, nondegenerate real 2-form ω
- $f: X \to X$ holomorphic automorphism.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	0000000

Definition

Cat-like system

Call (X, f) Cat-like if there is a dense Zariski open $U \subset X$ with,

- Stable/Unstable distributions E^{\pm} and manifolds W^{\pm} , on U.
- A Ricci-flat Kähler metric ω_0 on U, with $f^*\omega_0|E^{\pm} = \lambda_{\pm} \cdot \omega_0|E^{\pm}$.
- $\frac{1}{2} \log \lambda_+, \frac{1}{2} \log \lambda_-$ are the only Lyapunov exponents.
- An m.m.e. of f is the volume measure $\omega_0^{\dim X}$.

Example (Seen by far)

(1) Complexified $Cat_{\mathbb{C}}$ map, (2) Kummer examples from $Cat_{\mathbb{C}}$.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
0000000000	00000	000000	0000000

Questions

() Any other *Cat*-like systems, other than those from $Cat_{\mathbb{C}}$ as above?

When a system is Cat-like?

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
	00000		
Some Answers			

Theorem (J. '22)

- If a Cat-like system (X, f) is based on a projective hyperkähler manifold X, then it is a "Kummer example."
- If X is hyperkähler, f has h(f) > 0, and if a m.m.e. μ ≪ vol = ω^{dim X}, then (X, f) is Cat-like.

New terms, new hypotheses... where they are from?

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
	00000		
Some Answers			

Theorem (J. '22)

- If a Cat-like system (X, f) is based on a projective hyperkähler manifold X, then it is a "Kummer example."
- If X is hyperkähler, f has h(f) > 0, and if a m.m.e. μ ≪ vol = ω^{dim X}, then (X, f) is Cat-like.

New terms, new hypotheses... where they are from?

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
		00000	

Outline

1 The Cat Map

2 Cat-like Systems

3 Backgrounds

4 Sketch of the Proof

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > 20/32

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	00000	0000000
Contexts			

Think of a dynamical system on a manifold (M, f), whose measure of maximal entropy (m.m.e.) μ is in volume class.

- Typically such a system has locally homogeneous structures.
- If M is a complex manifold, usually (M, f) comes from a torus. (e.g. Kummer example (X, f)).

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	00000	0000000
Contexts			

Think of a dynamical system on a manifold (M, f), whose measure of maximal entropy (m.m.e.) μ is in volume class.

- Typically such a system has locally homogeneous structures.
- If M is a complex manifold, usually (M, f) comes from a torus. (e.g. Kummer example (X, f)).

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
000000000000000000000000000000000000000	88888	000000	0000000

Some results with the philosophy:

- (Zdunik '90) If $f: \mathbb{P}^1 \to \mathbb{P}^1$ has m.m.e. $\mu \ll$ Leb, then f is Lattès.
- (Berteloot–Dupont '05) Same result, but $f : \mathbb{P}^k \to \mathbb{P}^k$.
- (Cantat–Dupont '20) If $f: X \to X$, where X is a projective surface, h(f) > 0, has m.m.e. $\mu \ll \text{vol}$, then f is a Kummer example.
- (Filip–Tosatti '21) Same result, but X any K3 surface.
- (J. '22) Same result, but X a projective hyperkähler manifold.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	0000000

Some results with the philosophy:

- (Zdunik '90) If $f: \mathbb{P}^1 \to \mathbb{P}^1$ has m.m.e. $\mu \ll$ Leb, then f is Lattès.
- (Berteloot–Dupont '05) Same result, but $f : \mathbb{P}^k \to \mathbb{P}^k$.
- (Cantat–Dupont '20) If $f: X \to X$, where X is a projective surface, h(f) > 0, has m.m.e. $\mu \ll$ vol, then f is a Kummer example.
- (Filip-Tosatti '21) Same result, but X any K3 surface.
- (J. '22) Same result, but X a projective hyperkähler manifold.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
		000000	

Some results with the philosophy:

- (Zdunik '90) If $f: \mathbb{P}^1 \to \mathbb{P}^1$ has m.m.e. $\mu \ll$ Leb, then f is Lattès.
- (Berteloot–Dupont '05) Same result, but $f : \mathbb{P}^k \to \mathbb{P}^k$.
- (Cantat–Dupont '20) If $f: X \to X$, where X is a projective surface, h(f) > 0, has m.m.e. $\mu \ll \text{vol}$, then f is a Kummer example.

(---

22 / 32

- (Filip-Tosatti '21) Same result, but X any K3 surface.
- (J. '22) Same result, but X a projective hyperkähler manifold.

The Cat Map 00000000000	<i>Cat</i> -like Systems	Backgrounds 000000	Sketch of the Proof
Hyperkähler Manif	folds		

Definition

A simply connected compact Kähler manifold (X, ω) is *hyperkähler* if the group $H^0(X, \Omega^2)$ is generated by a 'holomorphic symplectic form' Ω .

- X then has even dimension, $2n = \dim X$.
- ω above is *Ricci-flat*. Equivalently, $\omega^{2n} = (\Omega \overline{\Omega})^n =:$ vol.

Example

K3 surfaces (2n = 2). Hilbert scheme of *n* points on a K3 surface.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	0000000
111 1	1 11		

The term "Kummer example" can be generalized to higher dimensions.

Definition

Kummer example

(X, f) is a Kummer example if

- we have a torus $\mathbb{T} = \mathbb{C}^m / \Lambda$ ($m = \dim X$) and an affine-linear map $L \colon \mathbb{T} \to \mathbb{T}$,
- a quotient by a finite group, \mathbb{T}/Γ , and *L* commutes with Γ ;
- and (X, f) normalizes and lifts $(\mathbb{T}/\Gamma, L)$.

The Cat Map Cat-like	Systems Background	s Sketch of the Proof
000000000000000000000000000000000000000	000000	0000000

Recall
$$\mathbb{T}_{\mathbb{C}} = \mathbb{C}^2 / \mathbb{Z}^4$$
.

Example

Let $L = Cat_{\mathbb{C}}^{\times n} \colon \mathbb{T}_{\mathbb{C}}^n \to \mathbb{T}_{\mathbb{C}}^n$.

Let
$$S_{n+1} = ($$
symmetric group of $(n+1)$ letters $) \frown (\mathbb{C}^2/\mathbb{Z}^4)^{n+1}$.

This S_{n+1} -action can be induced to $\mathbb{T}^n_{\mathbb{C}}$, commuting with L.

Let (X, f) normalize and lift $(\mathbb{T}^n_{\mathbb{C}}/S_{n+1}, L)$. So a Kummer example.

In fact, (X, f) is *Cat*-like (as $L = Cat_{\mathbb{C}}^{\times n}$ is).

◆□ → < ⑦ → < 差 → < 差 → 差 < 一 差 </p>

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
000000000000	00000	000000	0000000
Outline			
Outime			

1 The Cat Map

2 Cat-like Systems

3 Backgrounds

<ロト<部ト<単ト<単ト<単ト<単ト<単ト<単ト 26/32

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	000000
From Cat-like	e to rummer		

Recall: X is a projective hyperkähler manifold.

• (Projective) \Rightarrow Construct a contraction $X \rightarrow Y$ to a normal variety Y, for the (klt) pair $(X, X \setminus U)$.

• (Hyperkähler) $\Rightarrow U$ is flat under ω_0 . (Flatness result in (Benoist-Foulon-Labourie '92) applies here.)

Then Y_{reg} is flat, so $Y = \mathbb{T}/\Gamma$. So (X, f) normalizes and lifts $(\mathbb{T}/\Gamma, L)$.

The Cat Map	<i>Cat</i> -like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	
Showing <i>Cat</i> -like			

Recall:

- X is a hyperkähler manifold,
- $f: X \to X$ holomorphic automorphism, with h(f) > 0, and
- μ is an m.m.e. of (X, f), vol-class: $\mu \ll$ vol.

Goal: (X, f) is Cat-like.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
0000000000	00000	000000	000000

Base ingredient:

Theorem (Oguiso '09)

Let X be hyperkähler of dim X = 2n and $f: X \to X$ be holomorphic automorphism. Let $d_p(f)$ be the spectral radius of $f^* \circlearrowright H^{p,p}(X, \mathbb{C})$. Let $h := \log d_1(f)$.

Then for $0 \le k \le n$, $\log d_{2n-k}(f) = \log d_k(f) = k \cdot h$; and h(f) = nh.

(日) (部) (注) (注) (三)

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	

 $\pm \frac{1}{2}h$ are only Lyapunov exponents:

- Lyapunov exponents: Constrained: $\chi_1 \ge \ldots \ge \chi_n \ge 0 \ge \chi_{n+1} \ge \ldots \ge \chi_{2n}$.
- (Spectral radii d_p 's) + (Ledrappier–Young formula) + $\mu \ll vol \Rightarrow$

$$h(f) \leq 2(\chi_1 + \ldots + \chi_n) \geq 2n\chi_n \geq nh = h(f).$$

• Thus
$$\chi_1 = \ldots = \chi_n = \frac{1}{2}h$$
, and sim. $\chi_{n+1} = \ldots = \chi_{2n} = -\frac{1}{2}h$.

Stable/Unstable distributions E^{\pm} and manifolds W^{\pm} :

• Defined μ -a.e. points.

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	0000000

Measure of maximal entropy μ is vol:

- Cocycle (N, x) → e^{Nh/2}D_xf^N|E⁻(x) is, up to a bounded conjugation, *unitary* valued. Sim. for Df^{-N}|E⁺.
- ∴ f uniformly hyperbolic

$$\Rightarrow W^{\pm}$$
's widen the support *S* of $\mu = \frac{1}{|S|} \text{vol}|_S$
$$\Rightarrow \mu = \text{vol}.$$

The Cat Map	Cat-like Systems	Backgrounds	Sketch of the Proof
00000000000	00000	000000	000000

A metric with $f^*\omega_0|E^{\pm} = e^{\pm h}\omega_0|E^{\pm}$:

• ω_0 is the limit of metrics

$$\omega_k = \frac{1}{2k+1} \sum_{i=-k}^k e^{-|i|h} (f^i)^* \omega + \sqrt{-1} \partial \overline{\partial} \phi_k,$$

- i.e., ω_0 is like the Lyapunov metric;
- ϕ_k 's are set so that ω_k 's are Ricci-flat ($\omega_k^{2n} = \text{vol}$).
- Convergence holds at least on a Zariski open set U.
- (Jensen's inequality) + (Cohomology calculus) on ω_k 's, gives $f^*\omega_0 | E^{\pm} = e^{\pm h}\omega_0 | E^{\pm}.$