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The Cat Map

Let T = R2/Z2.

Cat : T→ T,

(z ,w) 7→ (2z + w , z + w), i.e.,[
z

w

]
7→

[
2 1

1 1

][
z

w

]

This Cat will be a toy example for a while.
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Cat is a matrix

[
2 1

1 1

]
. Two eigenlines: (ϕ = 1

2 (1 +
√

5)).

Example (Stable and Unstable distributions)

ϕ−2-eigenline E−(x) ⊂ TxT: shrinks by Cat. Stable distribution of Cat.

ϕ2-eigenline E+(x) ⊂ TxT: expands by Cat. Unstable distribution of Cat.

E+
E−
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Example (Stable and Unstable manifolds)

Wrap E−(x),E+(x) ⊂ TxT on T. Then we get immersed manifolds

W−(x),W+(x) (which are ∼= R).

Called stable and unstable manifold of Cat.

W+

W−
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Lyapunov exponents encodes how Cat acts on E±(x) (and W±(x)).

Example (Lyapunov Exponents)

logϕ2 = .9624 and logϕ−2 = −.9624 are Lyapunov exponents of Cat.

They are log of dialation rates along E+ and E−:

Cat stretches v ∈ E+(x) by ϕ2.

Cat shrinks v ∈ E−(x) by ϕ−2.
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Entropy

X compact, f : X → X continuous, µ a f -invariant measure.

Entropy h(f ) measures how complicated orbits of f are.

Measure entropy hµ(f ) measures ‘information’ of orbits w.r.t. µ.

Example

If f : R/Z→ R/Z shifts decimal point, f (.a1a2 . . .) = .a2a3 . . ., then

(patterns of x , f (x), . . . , f N−1(x)) ∼ (first N digits x = .a1a2 . . . aN · · · ).

Thus 10N many, and h(f ) = log 10.

If µ = Leb, the patterns are uniform, so hµ(f ) = log 10 too.

µ is a measure of maximal entropy (m.m.e.) if hµ(f ) = h(f ).
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For Cat, we use Lyapunov exponents to get h(Cat).

Example (Entropy)

Entropy h(Cat) of Cat is logϕ2.

Orbits CatN(x) lie near W+(x), so

(how long W+(x) is after CatN) ∼ (e logϕ
2

)N = (ϕ2)N

is the complexity.

× ×

×
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Recall µ is a measure of maximal entropy (m.m.e.) if hµ(f ) = h(f ).

Example (m.m.e.)

For Cat, the volume on T is a m.m.e..

hvol(Cat) counts how many ‘slices’ does CatN make on [0, 1]2: ∼ (ϕ2)N ,

thus

hvol(Cat) = logϕ2 = h(Cat),

so vol is m.m.e.

Cat0 Cat1 Cat2
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Summary

Cat map features:

Stable/Unstable distributions E± and manifolds W±.

Cat acts dilations along E±,

and log of dilation rates are Lyapunov exponents.

An m.m.e. of Cat is the volume measure.

Same properties, if we

complexify CatC : C2/Z4 → C2/Z4, and

n-fold product Cat×nC : C2n/(Z4)n → C2n/(Z4)n.
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Kummer Example

Let TC = C2/Z4, complexified CatC : TC → TC.

Let TC/{±1} = TC/(x ∼ −x). Induce CatC : TC/{±1} → TC/{±1}.

TC/{±1} is like a complex manifold, but with singularities.

Normalization π : X → TC/{±1} is a surjective map from a complex

manifold X , with a dense (Zariski) open U ⊂ X that

image of U by π is the non-singular locus of TC/{±1}, and

π is an isomorphism U ∼= π(U).

And, any holomorphic g : Y → TC/{±1} factors

Y → X → TC/{±1}.
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Normalize X → TC/{±1}. Then CatC lifts to f : X → X .

(In short: (X , f ) normalizes and lifts (TC/{±1},CatC).)

X—Kummer surface from TC.

f —Kummer example from CatC : TC → TC.
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Features of Cat are mostly kept on Kummer examples.

Proposition

The Kummer example f : X → X from CatC has:

Stable/Unstable distributions E± and manifolds W±, defined on a

dense (Zariski) open U ⊂ X .

f acts dilations along E±: a metric ω0 on U has

f ∗ω0|E± = λ± · ω0|E±,

and 1
2 of log of dilation rates are Lyapunov exponents.

An m.m.e. of f is the volume measure on X .
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Object of Interest

Now focus on a pair (X , f ):

(X , ω) compact Kähler manifold,

complex manifold X with a closed, nondegenerate real 2-form ω

f : X → X holomorphic automorphism.
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Cat-like system

Definition

Call (X , f ) Cat-like if there is a dense Zariski open U ⊂ X with,

Stable/Unstable distributions E± and manifolds W±, on U.

A Ricci-flat Kähler metric ω0 on U, with f ∗ω0|E± = λ± · ω0|E±.

1
2 log λ+,

1
2 log λ− are the only Lyapunov exponents.

An m.m.e. of f is the volume measure ωdimX
0 .

Example (Seen by far)

(1) Complexified CatC map, (2) Kummer examples from CatC.
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Questions

1 Any other Cat-like systems, other than those from CatC as above?

2 When a system is Cat-like?
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Some Answers

Theorem (J. ’22)

1 If a Cat-like system (X , f ) is based on a projective hyperkähler

manifold X , then it is a “Kummer example.”

2 If X is hyperkähler, f has h(f ) > 0, and if a m.m.e.

µ� vol = ωdimX , then (X , f ) is Cat-like.

New terms, new hypotheses. . . where they are from?
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Contexts

Think of a dynamical system on a manifold (M, f ), whose measure of

maximal entropy (m.m.e.) µ is in volume class.

Typically such a system has locally homogeneous structures.

If M is a complex manifold, usually (M, f ) comes from a torus. (e.g.

Kummer example (X , f )).

(X , f ) (TC,CatC)

(TC/{±1},CatC)
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Some results with the philosophy:

(Zdunik ’90) If f : P1 → P1 has m.m.e. µ� Leb, then f is Lattès.

(Berteloot–Dupont ’05) Same result, but f : Pk → Pk .

(Cantat–Dupont ’20) If f : X → X , where X is a projective surface,

h(f ) > 0, has m.m.e. µ� vol, then f is a Kummer example.

(Filip–Tosatti ’21) Same result, but X any K3 surface.

(J. ’22) Same result, but X a projective hyperkähler manifold.
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Hyperkähler Manifolds

Definition

A simply connected compact Kähler manifold (X , ω) is hyperkähler if the

group H0(X ,Ω2) is generated by a ‘holomorphic symplectic form’ Ω.

X then has even dimension, 2n = dimX .

ω above is Ricci-flat. Equivalently, ω2n = (ΩΩ)n =: vol.

Example

K3 surfaces (2n = 2). Hilbert scheme of n points on a K3 surface.
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“Kummer example”

The term “Kummer example” can be generalized to higher dimensions.

Definition

(X , f ) is a Kummer example if

we have a torus T = Cm/Λ (m = dimX ) and an affine-linear map

L : T→ T,

a quotient by a finite group, T/Γ, and L commutes with Γ;

and (X , f ) normalizes and lifts (T/Γ, L).
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Recall TC = C2/Z4.

Example

Let L = Cat×nC : Tn
C → Tn

C.

Let Sn+1 = (symmetric group of (n + 1) letters) y (C2/Z4)n+1.

This Sn+1-action can be induced to Tn
C, commuting with L.

Let (X , f ) normalize and lift (Tn
C/Sn+1, L). So a Kummer example.

In fact, (X , f ) is Cat-like (as L = Cat×nC is).

25 / 32



The Cat Map Cat-like Systems Backgrounds Sketch of the Proof

Outline

1 The Cat Map

2 Cat-like Systems

3 Backgrounds

4 Sketch of the Proof

26 / 32



The Cat Map Cat-like Systems Backgrounds Sketch of the Proof

From Cat-like to Kummer

Recall: X is a projective hyperkähler manifold.

(Projective) ⇒ Construct a contraction X → Y to a normal variety

Y , for the (klt) pair (X ,X \ U).

(Hyperkähler) ⇒ U is flat under ω0.

(Flatness result in (Benoist–Foulon–Labourie ’92) applies here.)

Then Yreg is flat, so Y = T/Γ. So (X , f ) normalizes and lifts (T/Γ, L).
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Showing Cat-like

Recall:

X is a hyperkähler manifold,

f : X → X holomorphic automorphism, with h(f ) > 0, and

µ is an m.m.e. of (X , f ), vol-class: µ� vol.

Goal: (X , f ) is Cat-like.
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Base ingredient:

Theorem (Oguiso ’09)

Let X be hyperkähler of dimX = 2n and f : X → X be holomorphic

automorphism. Let dp(f ) be the spectral radius of f ∗ � Hp,p(X ,C). Let

h := log d1(f ).

Then for 0 ≤ k ≤ n, log d2n−k(f ) = log dk(f ) = k · h; and h(f ) = nh.

log dp(f )

p
0 1 n − 1 n n + 1 2n· · · · · ·

+h ea. step

h

nh = h(f )
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± 1
2h are only Lyapunov exponents:

Lyapunov exponents: χ1 ≥ . . . ≥ χn ≥ 0 ≥ χn+1 ≥ . . . ≥ χ2n.

(Spectral radii dp’s) + (Ledrappier–Young formula) + µ� vol ⇒

h(f ) = 2(χ1 + . . .+ χn) ≥ 2nχn ≥ nh = h(f ).

Thus χ1 = . . . = χn = 1
2h, and sim. χn+1 = . . . = χ2n = − 1

2h.

Stable/Unstable distributions E± and manifolds W±:

Defined µ-a.e. points.
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Measure of maximal entropy µ is vol:

Cocycle (N, x) 7→ eNh/2Dx f
N |E−(x) is, up to a bounded

conjugation, unitary valued. Sim. for Df −N |E+.

∴ f uniformly hyperbolic

⇒ W±’s widen the support S of µ = 1
|S|vol|S

⇒ µ = vol.
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A metric with f ∗ω0|E± = e±hω0|E±:

ω0 is the limit of metrics

ωk =
1

2k + 1

k∑
i=−k

e−|i|h(f i )∗ω +
√
−1∂∂φk ,

i.e., ω0 is like the Lyapunov metric;

φk ’s are set so that ωk ’s are Ricci-flat (ω2n
k = vol).

Convergence holds at least on a Zariski open set U.

(Jensen’s inequality) + (Cohomology calculus) on ωk ’s, gives

f ∗ω0|E± = e±hω0|E±.
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